Accuracy of desingularized boundary integral equations for plane exterior potential problems
نویسندگان
چکیده
In this article, computational results from boundary integral equations and their normal derivatives for the same test cases are compared. Both kinds of formulations are desingularized on their real boundary. The test cases are chosen as a uniform flow past a circular cylinder for both the Dirichlet and Neumann problems. The results indicate that the desingularized method for the standard boundary integral equation has a much larger convergence speed than the desingularized method for the hypersingular boundary integral equation. When uniform nodes are distributed on a circle, for the standard boundary integral formulation the accuracies in the test cases reach the computer limit of 10 in the Neumann problems; and O(N) in the Dirichlet problems. However, for the desingularized hypersingular boundary integral formulation, the convergence speeds drop to only O(N) in both the Neumann and Dirichlet problems. q 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
CALCULATION OF NON LIFTING POTENTIAL FLOW USING DESINGULARIZED CAUCHY\'S FORMULA
This paper discusses the disturbance velocity and potential as well as the total velocity formulation for non lifting potential flow problem. The problem is derived based on the Cauchy method formulation. The adding and subtracting back technique is used to desingularize the integral equations. The desingularized boundary integral equations are then discretized. The discretized equations can be...
متن کاملThree-dimensional Desingularized Boundary Integral Methods for Potential Problems
The concept of desingularization in three-dimensional boundary integral computations is re-examined. The boundary integral equation is desingularized by moving the singular points away from the boundary and outside the problem domain. We show that the desingularization gives better solutions to several problems. As a result of desingularization, the surface integrals can be evaluated by simpler...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملMIXED BOUNDARY VALUE PROBLEM FOR A QUARTER-PLANE WITH A ROBIN CONDITION
We consider a mixed boundary value problem for a quarter-plane with a Robin condition on one edge. We have developed two procedures, one based on the advanced theory of dual integral equations and the other, in our opinion simpler technique, relying on conformal mapping. Both of the procedures are of interest, because the former may be easier to adapt to other boundary value problems.
متن کاملA General Boundary-Integral Formulation for Zoned Three-Dimensional Media
A new boundary-integral formulation is proposed to analyze the heat transfer in zoned three-dimensional geometries. The proposed formulation couples the boundary formula, the gradient of the boundary formula, and the exterior formula. An advantage of this formulation over the traditional methods is that any linear condition at the interface between subdomains may be incorporated into the formul...
متن کامل